Evolutionary history and the life cycle of seaweeds

Evolution

As discussed near the beginning of this book, the impact of algae on the global ecosystem is enormous. It is estimated that they are currently responsible for about 90% of the oxygen that is released into the atmosphere. Furthermore, their contribution to the physical conditions on Earth were vitally important in setting the stage for the evolution of higher organisms.

The first signs of life on our planet date back to a time when it was still very young. Earth was formed about 4.5 billion years ago and it is thought that the earliest organisms had already appeared more than 3.8 billion years ago. During this period, the conditions on Earth were very different from those of today. A particular indication of the physical state of the planet was the nearly total absence of oxygen in the atmosphere, less than one part in ten billion. Life consisted of simple, unicellular organisms, the so-called prokaryotes, which most closely resemble present-day bacteria. The prokaryotes encompass two separate domains (or superkingdoms): the Bacteria and the Archaea.

About 2.5 to 1.5 billion years ago, there was a noticeable change in the Earth’s atmosphere, as the amount of oxygen in it started to increase. This was brought about by the appearance of new forms of life that could use sunlight to convert carbon dioxide into oxygen and carbohydrates, a process we know as photosynthesis. There is probably no other development in the whole of the Earth’s existence that has altered its surface and climatic conditions as dramatically as did photosynthesis. The oxygen-producing blue-green microalgae, which go back about 3 billion years, are considered to have been instrumental in effecting this change.

Chemically speaking, oxygen is a very reactive substance. Those organisms that could not adapt to its presence either died, buried themselves in...
Energy Content, Fats, Proteins, Carbohydrates, and Fiber

<table>
<thead>
<tr>
<th></th>
<th>Energy content kJ/100g</th>
<th>Fats g/100g</th>
<th>Proteins g/100g</th>
<th>Carbohydrates g/100g</th>
<th>Fiber g/100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winged kelp (Alaria esculenta)</td>
<td>1,100</td>
<td>3.6</td>
<td>18</td>
<td>40</td>
<td>39</td>
</tr>
<tr>
<td>Konbu (Saccharina japonica)</td>
<td>1,100</td>
<td>1.1</td>
<td>7</td>
<td>55</td>
<td>3</td>
</tr>
<tr>
<td>Hijiki (Sargassum fusiforme)</td>
<td>1,000</td>
<td>0.8</td>
<td>10</td>
<td>47</td>
<td>17</td>
</tr>
<tr>
<td>Wakame (Undaria pinnatifida)</td>
<td>1,150</td>
<td>4.5</td>
<td>13</td>
<td>51</td>
<td>4</td>
</tr>
<tr>
<td>Bladder wrack (Fucus vesiculosus)</td>
<td>1,200</td>
<td>3.6</td>
<td>6</td>
<td>55</td>
<td>4</td>
</tr>
<tr>
<td>Knotted wrack (Ascophyllum nodosum)</td>
<td>1,000</td>
<td>1</td>
<td>10</td>
<td>52</td>
<td>6</td>
</tr>
<tr>
<td>Arame (Eisenia bicyclis)</td>
<td>1,100</td>
<td>1.3</td>
<td>12</td>
<td>52</td>
<td>7</td>
</tr>
<tr>
<td>Dulse (Palmaria palmata)</td>
<td>1,100</td>
<td>1.7</td>
<td>22</td>
<td>45</td>
<td>33</td>
</tr>
<tr>
<td>Laver, nori (Porphyra spp.)</td>
<td>1,350</td>
<td>2</td>
<td>34</td>
<td>45</td>
<td>7</td>
</tr>
<tr>
<td>Carrageen (Chondrus crispus)</td>
<td>1,050</td>
<td>1–3</td>
<td>15</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>Sea lettuce (Ulva spp.)</td>
<td>900</td>
<td>0.6</td>
<td>24</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>Green string lettuce (Ulva spp.)</td>
<td>900</td>
<td>0.5</td>
<td>21</td>
<td>50</td>
<td>7</td>
</tr>
<tr>
<td>Spirulina</td>
<td>1,250</td>
<td>7</td>
<td>65</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Recommended daily intake</td>
<td>8,400+ kJ</td>
<td>65+ g</td>
<td>50+ g</td>
<td>300+ g</td>
<td>25+ g</td>
</tr>
</tbody>
</table>

mg = milligram = 0.001 gram; kJ = kilojoule = 0.24 kcal

species and the part of the organism from which it is extracted. Chain length also varies, with the shortest typically composed of 500 monosaccharide groups.

The usefulness of alginates, particularly in the form of sodium alginate, rests on their water solubility. In an aqueous solution, sodium alginate is found in the ionic state as a so-called electrolyte.

Alginates form gels in the presence of Ca++ (or other divalent ions such as Mg++ and Ba++), a process that occurs at much lower temperatures than is possible with pectins. Gelation with Ca++ provides for a stronger gel, whereas Mg++ leads to a weak gel, both with different rheological properties and hence different applications. The affinity for Ca++, which is abundant in milk, also means that combinations of alginate and milk are particularly useful.

- Alginates can form gels in water when the long polysaccharide chains are bound together by Ca++ ions (shown in red).

- Some agars and carrageenans in an aqueous solution form double helices when it is cooled. These can bind to each other in a variety of ways to form networks (gels). Carrageenans are differentiated from each other by their ability and tendency to form different types of gels and molecular aggregates.
Bibliography

Seaweeds in cooking

Seaweeds and algae
haploid generation, the large blades of which are harvested to produce nori.

Courtois, Bernard French chemist (1777–1838) who, in the course of producing saltpetre from seaweed ash, discovered the element iodine.

Crawford, Michael A. British neurochemist and brain researcher.

Cryptogamia archaic botanical classification of those plants that lack stems and true flowers, for example, algae, mosses, lichens, fungi, and ferns.

Cunnane, Stephen Canadian researcher studying human evolution.

dashi soup stock made from an extract of bonito fish flakes (katsuobushi) and konbu. Ichiban dashi and niban dashi refer to the first and second extracts, respectively.

deoxyribonucleic acid (DNA) polynucleotide consisting of a chain of nucleic acids; basis for the genetic information encoded in genetic material and the genome. In the genome, DNA forms a double helix in which two DNA chains spiral around each other.

desmosterol higher-level sterol found especially in red algae; related to cholesterol in animals.

dHA see docosahexaenoic acid.

diatoms unicellular microalgae, encased in a silicate shell with two valves; one of the most common types of phytoplankton (plant plankton).

dietary fiber macromolecules that cannot be broken down by the body’s enzymes. The distinction is made between fibers that are water soluble and those that are not. Seaweeds contain both types: for example, the polysaccharides agar, alginate, and carrageenan are soluble, while cellulose and xylan are not. Dietary fiber can constitute up to 75% of the dry components of seaweeds.

diffusion random movement (Brownian motion) of molecules or small particles.

dillisk Gaelic name for dulse (Palmaria palmata).

dimethyl sulphide (DMS) organic compound containing sulphur, CH₃SCH₃, formed by oxidation or organic decomposition of dimethylsulfiniopropionate (DMSP) in green and red algae. DMS has a characteristic pungent odor given off, for example, by heated milk, cabbage, cooked mussels, and rotting seaweed. The formation of DMS in the oceans is deemed to be an important factor in the climate change that is thought to be taking place on Earth. When DMS is released in the atmosphere, it is oxidized to create compounds that, in the form of aerosols, can cause condensation of the atmospheric moisture content, thereby promoting cloud formation and having an effect on the weather.

dimethylsulfiniopropionate (DMSP) organic compound containing sulphur, (CH₃)₂S=CH₂CH₃COO⁻, found in red and green (but not brown) algae, where it serves to maintain the proper osmotic balance between the organism and the surrounding salt water. DMSP, which has neither odor nor taste, possibly also acts as an antioxidant within the cells of the seaweeds. When decomposing by oxidation or bacterial action, especially in the presence of the genus Roseobacter, DMSP in dead algae and seaweeds gives off the foul smelling gas, dimethyl sulphide (DMS). Fish and shellfish that feed on seaweeds and algae accumulate DMSP in their cells.

diploid word used to describe cells that have the normal complement of chromosomes, that is, a double set.

DMS see dimethyl sulphide.

DMSP see dimethylsulfiniopropionate.

DNA see deoxyribonucleic acid.

docosahexaenoic acid (DHA) superunsaturated, long-chain fatty acid with 22 carbon atoms and six double bonds; member of the omega-3 family. Found in only very small quantities in seaweeds, but in great abundance in microalgae, for example, Spirulina.

domoic acid poisonous amino acid, which acts as a neurotoxin, found in some microalgae. It can accumulate in shellfish that feed on microalgae and is the principal cause of shellfish poisoning.

Drew-Baker, Kathleen Mary British alga researcher (1901–57), whose discoveries regarding the life cycle of the red alga Porphyra were the scientific foundations for the large-scale cultivation of Porphyra for nori production.

Druelh, Louis D. Canadian seaweed researcher.

dicosanoid hormone or signalling molecule formed from omega-3 or omega-6 fatty acids, which play an important role in the regulation of such functions as blood flow and the immune defenses.
Chateau Seaweed 177
cheese 170
chelation 88, 101, 261
Chernobyl 106
chewing gum 217
Chiba 28, 75, 76
chicken 105, 222
Chi Han 7
Chile 6, 9, 42, 210, 212
China 7, 8, 42, 50, 75, 89, 95, 118, 204, 220
~ cuisine 96
chips 180
chirashi-zushi 163, 261
Chlorella spp. 38, 94, 251, 261
chlorine 106
chlorophyll
~ and seaweed colors 5, 55
~ granules 4, 22
~ in brown algae 5
~ in green algae 5
~ in nori 121
~ in red algae 5
~ in seaweeds 4, 102, 236
~ in Spirulina 94
Chlorophyta 22, 250, 251, 261
chloroplast 4, 236, 261
chocolate 183
cholesterol 55, 60, 102, 103, 129, 235, 261
Chondrus crispus 10, 16, 40, 41, 127, 173, 198, 211, 240, 251. See also carrageen, Irish moss
~ contents 241–244
chromium 54, 242
chromosome 23, 236, 261
Cill Chiaráin 225
Cladodonta lyallii 106
Cladosiphon okamuranus 135, 251. See also cuvie
Cladosiphon okamuranus 135, 251. See also cuvie
Cladowsiphon okamuranus 135, 251. See also cuvie
Claytonia perfoliata 136
cleimín 225–226
climates 62, 234
coagulation 261
~ factor 111
cockles 148, 151
cockle women 151
colds 10, 216
colloids 101, 261
colon 111, 129
Columbus, Christopher 3
complex fluid 249, 261
Conchocelis 261
~ culture 58
~ rosea 24, 237, 251
~ stage 32, 51, 238
conchospore 32, 51, 58, 237, 261
condiment 70, 122, 123, 134, 175
Connemara 225
consommé 131
contraception 108, 220
Copenhagen Pectin Factory 210
Cottonii 211
Courtois, Bernard 61, 262
cows 222
cow weed 221
CP Kelco 210–211
Crawford, Michael A. 5, 262
cream cheese 170, 208
creams 220
crispbread 167
crustaceans 200
Cryptogamia 13, 111, 262
cucumber 137
culpe 12
cultivation. See also aquaculture
~ of algae 213
~ of brown seaweeds 46
~ of Chondrus 40–41
~ of konbu 50
~ of microalgae 214
~ of Porphyra 24, 25, 28–32, 42, 51–52, 56–58, 80
~ of sea lettuce 214
~ of seaweeds 42, 45, 50, 79
~ of Spinosum 208
Cunnane, Stephen 6, 262
Cutleria multifida 103
cuvie 250
cyanobacteria 22, 38, 93, 251
D
dabberlocks 250. See also Aλaria esculenta
dairy products 55, 204, 208, 211
dashi 262
~ and umami 96, 178
~ for flavoring 138
~ ichiban 124
~ in Japanese soups 124–127
~ niban 124, 126
~ powder 124
Dass, Peter 17
defense mechanisms 37, 38, 218, 219
dehydration of seaweeds 34, 120
Delesseria sanguinea 114, 251.
~ See also sea beech
Danmark 12, 20, 99, 210
dental 217
deoxyribonucleic acid 9, 262
desmosterol 60, 262
desserts 171–175
DHA. See docosahexaenoic acid
diabetes 102
diabetics 102, 129
diatoms 21, 111, 236, 262
~ in evolution 23
diet. See also nutrition
~ and cancer 108
~ and genes 6
~ and iodine 106, 110
~ cattle 222
~ homonid 6
~ human 5, 60
~ Icelandic 16
~ Japanese 29, 101, 112, 118
~ low-calorie 104
~ Polynesian 8
~ Scandinavian 14
~ Stone Age 14
~ Western 102, 108
~ with seaweeds 112, 118, 185, 218, 230
dietary advice 112
dietary fiber 262
~ and wellness 103
~ in seaweeds 52, 54, 55, 101, 180, 243, 247–249
~ insoluble 54, 55
~ soluble 54
diffusion 26, 262